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LE GROUPE DES TRANSFORMATIONS DE [0,1]
QUI PRESERVENT LA MESURE DE LEBESGUE
EST UN GROUPE SIMPLE

PAR
A. FATHI

ABSTRACT

We prove that the group of measure preserving transformations of [0,1] is a
simple group, i.e. has no non-trivial normal subgroup.

§1. Introduction

Soit ¢ le groupe des bijections de [0, 1] qui sont bi-Lebesgue mesurables et qui
préservent Ja mesure de Lebesgue. Comme d’habitude on identifie deux
éléments de 4 qui sont égaux presque partout.

S. Harada [4] a montré que le groupe % n’a pas de sous-groupe distingué non
trivial fermé pour la topologie faible (voir [3], page 62 pour la définition de la
topologie faible).

Le but de cette note est de montrer que ¥ est en fait un groupe simple.
Suivant la méthode habituelle, on montre que ¢ est parfait et que [, 4] est le
plus petit sous-groupe distingué de 4.

Dans la suite, m désigne la mesure de Lebesgue. Si f€ 9, supf=
{x|x €[0,1], f(x) # x}.

On utilisera fréquemment et sans le mentionner explicitement le lemme
suivant:

LemMME 0. Si A et B sont deux sous-ensembles mesurables de [0,1] ayant
méme mesure, alors il existe f appartenant a 4 tel que f(A)= B.

Pour une démonstration du Lemme 0, nous renvoyons a [3] page 74.
Je remercie vivement Michel Herman pour m’avoir indiqué ce probléme, ainsi
que pour m’avoir encouragé a le résoudre.
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§2. Etude des transformations a orbites finies

Soit fE€%; on dit que f est a orbites finies si, pour tout x €[0,1]
{f*(x)| n €Z} est un ensemble fini.

ProrosiTION 1. Soit f € § une transformation a orbites finies, alors f est un
commutateur. Plus précisément, il existe s et t € 4G tels que f = [s,t] = sts 't ™'; de
plus on peut supposer que sups et supt sont inclus dans supf.

DEMONSTRATION. ler cas: On suppose que toutes les orbites de f sont de
longueur p. Une telle transformation est conjuguée a la rotation d’angle 2+ /p
sur un cercle (voir le lemme 1 page 70 et le milieu de la page 78 dans [3]). Une
telle rotation R est le produit de deux symétries orthogonales par rapport a des
droites. Comme deux telles symétries sont conjuguées par une rotation, on
obtient aisément que cette rotation est un commutateur dans %.

2e cas: Soit f a orbites finies. On désigne par Y, la réunion des orbites de f de
longueur p. On a alors [0,1] = U, .Y, et supf = U, ., Y,. Il suffit d’appliquer le
cas précédent a f| Y, pour p =1 pour conclure. g

§3. G est parfait
On utilisera la proposition suivante:

ProposITION 2. Soit f € 4. On peut trouver une décomposition de [0,1] en 6
ensembles mesurables [0,1]= A UB,UB,UC,UC,U G;, telle que:

i) f|A est Iidentité,

ii) f(Bi)= B,

iii) f(C) = C,, f(Cr)=C..

Pour une démonstration de la Proposition 2, nous renvoyons au lemme 7.2,
page 104 de {2].
La Proposition 2 est représentée schématiquement par la Figure 1:

G
B, 1
G
T 1
A B, G

Fig. 1.
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Gardons les notations de la Proposition 2. On note par f la transformation
induite par f sur B, U C,, plus précisément dans notre cas, f est défini par:
f? sur B,
f= { f sur C,.
id ailleurs
On vérifie aisément les points suivants:
—feq
—sup f Csupf,
—m(sup f)=im (supf).
Remarquons alors que f'f est a orbites finies, car on a (comme un calcul
immédiat le montre):
id sur A
f sur B,
f'f=13 f'surB,
fsur C,UC,
f2sur C.,.

Regroupant ce qui vient d’étre montré et la Proposition 1, on obtient:

LeMME 3. Pour tout f appartenant a 9, on peut trouver f, s, t appartenant & §
tels que:

i) f=I[s1]f

ii) sups,supt, sup f sont inclus dans supf,
iii) m (sup f) =im (supf).

Dans le lemme suivant I, désigne I'intervalle I, = [£{231/2/,2;_,1/2], voir

Figure 2.
0 172 3/4]7/18 1
L | | | s
L T T T =1
I] Iz IJ
Fig. 2.

LeEMME 4. Soit f appartenant a 9, supposons que supf CI,. On peut alors
construire 2 suites (f)iz1 (G )iz1 d’éléments de G telles que:

a) fi=1f,
b) fi = Cfiur,
c) supfi CI,

d) G =[s,t]{s}, ti] avec sups, supt, sups;i et supt! inclus dans I, U I...

DEMONSTRATION.  On montre comment construire C; et f, les suites s’obtien-
nent en recommengant de la méme maniére.
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Par le Lemme 3, on peut trouver f, s, t tous de support dans I, tels que:
_f = [S, t] f’
— m (sup f) =3im (supf).
Par la 2e condition, on a m (supf) = m(L)=3im(I,).
Par application du Lemme 0, on peut trouver t' € ¥ tel que supt’'CI, U I, et
que t'(sup f) C L. Posons alors f,=t'ft’”", on a:

—SuprCIz,
—f=(stf ={s QL1 fr = [s,[f 11f.
1 suffit alors de poser C, = [s, t][f, t']. |

COROLLAIRE 5. Soit f tel m (Supf)=3, alors f est le produit de 4 com-
mutateurs.

DEMONSTRATION.  Par le Lemme 0, on peut supposer que sup f CI,. Appli-
quons a f la construction du Lemme 4, dont nous gardons les notations.

Puisque les (Cax+1)xz1 (resp(Cux Jx=1) ont des supports disjoints, il est facile de
voir que Cimp= CiCsCs... (resp Cpai = C2C4Cs...) existe. De plus Cimp=
[Simps Limp) [Simps Himp] (€SP Craic = [Spaics Louic] [Spairs Loaic])- Si ON montre alors que
f = CimpCrair, ON aura terminé.

Pour le faire, remarquons que la relation G = f,f., et le fait que les f; ont des
supports disjoints, entrainent que:

Ciow = if 2 fof ' fsfs' .= (Fifafs. . (2 fa'fed..),
Coi = fof3 fofs' fofit .= (5 5 f7 . ) fafafs. . o)
En faisant le produit de ces égalités membre a membre, on obtient:
f=Ff= Cimp Cpair. a
THEOREME 6. % est parfait. Plus précisément tout élément de § est le produit de

5 commutateurs.

DEMONSTRATION.  Par le Lemme 3, f = [s, t] f avec m (sup f) =< 3. Il suffit alors
d’appliquer le corollaire 5 a f. O

§4. % est simple

On va démontrer que [, 4] est le plus petit sous-groupe distingué de 4. Pour
cela on va adapter a notre situation un argument connu, qui est di a Epstein [1]
et Higman [5}].

On démontre d’abord un lemme.

LEMME 7. Soit ¢ >0 donné, toute transformation appartenant a § s’écrit
=818 avec m{supg)<e.
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DemonstrATION. 1l suffit de montrer que si fE€ %, alors f=g,g. avec
m (supg)=im (supf) i =1,2.

Posons A =supf. Soit BCA avec m(B)=im(A). Soit g, € 4 qui vérifie:

— & ’ B = f’

—supg, CB U f(B) et par conséquent m(sup g,)=im(A).

L’existence de g, est établie par le Lemme 0 puisque m(B - f(B))=
m(f(B)— B). Cette égalité résulte du calcul suivant:

m(B ~f(B))=m(B—-BNf(B))=m(B)-m(B Nf(B))
=m(f(B))—m(B N f(B))=m(f(B)- B).
Si on pose g.=gi'f, on a supg.CA — B et par conSequent m (supg;) =
m(A-B)=im(A). O

REMARQUE. Le Lemme 7 se démontre aussi immédiatement en remarquant
que ¥ est connexe (et méme contractile) pour la topologie forte [6].

ProrosiTioN 8. [¥9, 9] est le plus petit sous-groupe distingué (non trivial) de 4.

DEMONSTRATION.  Soit # un sous-groupe distingué non trivial de 4. On peut
alors trouver f € ¥ f# id. Puisque f# id, il existe E C[0, 1] de mesure >0 et tel
que f(E)NE = (voir Lemme 7.1, page 103 de [2]).

Pour montrer que [4, 4] C %, il suffit, d’apres le Lemme 7, de montrer que si g,
h € ¢ ont un support de mesure inférieure 3 m(E)/2, alors [g, h] € .

Par I'hypothése faite sur g et h, on a m (suph Usupg)=m (E), par
conséquent, quitte & conjuguer f par un élément de %, on peut supposer que
Supg USuph CE.

Remarquons alors que h = [k, f]=hfh ' f' appartient 2 %. De méme [g, k]
appartient 2 %. Or [g,h]=[g, h], comme on le voit en remarquant que g et
fh™'f7" commutent, puisqu’ils sont a supports disjoints (supg CE et
supfh™'f ' Cf(E)). On a alors [g, h] € #. O

Regroupant le Théoréme 6 et la Proposition 9, on obtient:

THEOREME. ¢ est un groupe simple.

§5. Conséquence

Puisque 4 est un groupe simple, si f est #id, tout autre élément g s'écrit
g =fi-f. avec f, conjugué a f*'. Nous allons voir que n peut &tre majoré par
une constante qui ne dépend que de m(supf). La démonstration se fait en
examinant de plus prés ce qui précede.

Considérons d’abord le cas des involutions. Rappelons que T est une
involution si T?=1d.
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LEMME 9. Tout élément de 4 est le produit d’au plus 10 involutions.

DemonsTRATION. 1l ressort de la démonstration de la Proposition 1 que toute
transformation a orbites finies est le produit de deux involutions.

Considérons maintenant f avec sup f CI,. Par ce qui précéde le Lemme 3,
on peut écrire f = g,f avec m (sup f) <4 et g, a orbites finies. Si ¢ une involution
telle que t(supf)ClL, suptCLUL et m(supt)=2m(l;), on a: f=
giftf 't tft™" . Sionpose ftf'=h,t =k ettft"'=f, on a:

—f = gihikif,

— g, est a orbites finies, h, et k, sont des involutions,

—supg: Cli; suph; et supk, CI,UL; supf,ClL.

Ce procédé permet de construire par induction des suites (f )iz1 (g )iz1 (A )iz: €t
(ki)i=: telles que:

—f=f, supfi Cl,

—f = ghikfin,

— g est a orbites finies, h; et k; sont des involutions,

—sup g CI, suph; et supk; CL UIL.; m(suph)=m(supki)=2m (I..,).
On obtient comme au Corollaire 5: f = gimp Rimp Kimp § paic A pair K pair, Clairement Ay,
Kimp, Mpaic €t Kpar sont des involutions, gim, €t gp. sont d’ordre fini, et par
conséquent chacun est le produit de 2 involutions. On en conclut que f est le
produit de 8 involutions.

Ce qui précede le Lemme 3 montre qu’une transformation quelconque est le
produit d’'une transformation a orbites finies et d’une transformation dont le
support a une mesure <=3, par conséquent toute transformation est le produit
d’au plus 10 involutions. 0

ReMARQUE. Dans la construction précédente, on voit que m (supg)=
m(I)=1/2" et m (suph;)=m (supk;)=2m (I...) = 1/2". Ceci nous donne:

1 2

m (SUP gimp)s M (SUP Mimp), M (SUP Kimmp) = 2022.*1 =3
- 1 1
m (SUP §paic), M (SUP hpuir), M (sup kpair) = Z e 3

Ceci permet de dire que, parmi les dix involutions nécessaires pour écrire une
transformation, il y en a 4 dont le support a une mesure = i et 4 dont le support a
une mesure =3. On utilisera ce fait dans la suite.

LemME 10. Si fE Y, alors il existe ECI tel que m(E)Zjim (supf) et
f(E)YNE =@.
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DeémonsTRATION.  C’est une conséquence de la Proposition 2, car il suffit de
poser E = B,UC,. 0

CoroLLAIRE 11.  Soitf € 4, f# id. Soit t une involution, alors t est le produit de
2k conjugués de f ou f' avec k = [3m (supt)/2m (supf)] + 1, oit [x] est le plus
grand entier strictement inférieur a x.

DEMONSTRATION.  Si ¢ est une involution quelconque, ¢ s’écrit comme le
produit de k involutions dont le support a une mesure <3m(supf), ou
k =[3m (supt)/2m (supf)] + 1. 1l suffit, par conséquent, de montrer que, si
a =im (supf), alors il existe une involution ¢ avec m(supt)=a et t est le
produit de 2 conjugués de f*'. Pour cela, soit t' une involution avec supt' CE et
m (supt’)= a/2, ou E est donné par le Lemme 10; si on pose t = t'ft'f™", on
vérifie aisément que ¢ a les propriétes voulues. O

THEOREME. Si f#1d, tout élément de G est le produit d’au plus (18n +24)
conjugués de fou f~', oun =[1/m (sup f)]. En particulier si I’ensemble des points
fixes de f est négligeable, tout élément de 4 est le produit d’ au plus 24 conjugués de

fouf

DeMoNsTRATION.  Le Corollaire 11, joint au Lemme 9 et a la remarque qui le
suit, montrent qu’un élément de ¥ est le produit d’au plus 2/ conjugués de f
ou ' avec:

1=2<[2—m3(s%p—f)]+1)+4<[-2m—:z;j—p?—)]+1)+4<[5"—1%35f—)]+1).

Or on voit facilement que:

I=2(@Gn+ D)+ D)+4(n+ 1)+4(G+1)=9n +12. 0
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