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LE GROUPE DES TRANSFORMATIONS DE [0,1] 
QUI PRESERVENT LA MESURE DE LEBESGUE 

EST UN GROUPE SIMPLE 

PAR 

A. F A T H I  

ABSTRACT 

We prove that the g roup  of measure  preserving t ransformat ions  of [0, 1] is a 
simple group,  i.e. has no non-trivial normal  subgroup.  

§1. Introduction 

Soit q3 le groupe des bijections de [0, 1] qui sont bi-Lebesgue mesurables et qui" 

pr6servent la mesure de Lebesgue. Comme d'habitude on identifie deux 

616ments de ~ qui sont 6gaux presque partout. 

S. Harada [4] a montr6 que le groupe ~ n'a pas de sous-groupe distingu6 non 

trivial ferm6 pour la topologie faible (voir [3], page 62 pour la d6finition de la 

topologie faible). 

Le but de cette note est de montrer que ~ est en fait un groupe simple. 

Suivant la m6thode habituelle, on montre que ~3 est parfait et que [q3, ~d] est le 

plus petit sous-groupe distingu6 de ~d. 

Dans la suite, m d6signe la mesure de Lebesgue. Si f ~  ~, supf - -  

{x Ix ~[O, 1], f (x)~ x}. 
On utilisera fr6quemment et sans le mentionner explicitement le lemme 

suivant: 

LEMME 0. Si A et B sont deux sous-ensembles mesurables de [0, 1] ayant 

m~me mesure, alors il existe f appartenant fi ~ tel que f (A  )= B. 

Pour une d6monstration du Lemme 0, nous renvoyons h [3] page 74. 

Je remercie vivement Michel Herman pour m'avoir indiqu6 ce probl~me, ainsi 

que pour m'avoir encourag6 ~ le r6soudre. 
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§2. Etude des transformations a orbites finies 

Soit f E ~ 3 ;  on dit que f est & orbites finies si, pour tout xE[O,  1] 

{f" (x) ln  @ Z} est un ensemble fini. 

PROPOSITION 1. Soit f E ~ une transformation d orbites ]inies, alors f est un 

commutateur.  Plus pr~cisdment, il existe s et t E q3 tels que f = Is, t] = sts-'t-~; de 

plus on peut supposer que sups et supt sont inclus dans supf. 

Di~MONSTRATION. ler cas: On suppose que toutes les orbites de f sont de 

|ongueur p. Une telle transformation est conjugu6e ~ la rotation d'angle 2rr/p 

sur un cercle (voir le lemme 1 page 70 et le milieu de la page 78 dans [3]). Une 

telle rotation R e s t  le produit de deux symdtries orthogonales par rapport h des 

droites. Comme deux telles sym6tries sont conjugu~es par une rotation, on 

obtient ais6ment que cette rotation est un commutateur dans ~3. 

2e cas: Soit f & orbites finies. On d6signe par Yp la r6union des orbites de f de 

longueur p. On a alors [0, 1] = Up~oYp et s u p / =  Up__-z Yp. I1 suffit d'appliquer le 

cas pr6c6dent ~ f l Yp pour p => 1 pour conclure. [] 

§3. G est parfait 

On utilisera la proposition suivante: 

PROPOSITION 2. Soit f E cg. On peut trouver une d~composition de [0, 1] en 6 

ensembles mesurables [0, 1] = A U B1U B2 U C1U C2 U C3, telle que: 

i) f lA est l'identit~, 

ii) f ( B , ) =  B2, 

i i i )  f(C,)= C2, f(C2)= C~. 

Pour une d6monstration de la Proposition 2, nous renvoyons au lemme 7.2, 

page 104 de [2]. 

La Proposition 2 est repr6sent6e sch6matiquement par la Figure 1: 

C~ 

B2 1' 

t t 

B~ C1 

C~ 

A 

Fig. 1. 
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Gardons les notations de la Proposition 2. On note par f la transformation 

induite par f sur B~ U C1, plus pr6cis6ment dans notre cas, f e s t  d4fini par: 

ff  sur B1 
f =  f surC,. 

id ailleurs 

On v4rifie ais6ment les points suivants: 

- -  sup f C sup f, 
- -  m (sup f )  <- ½ m (sup f). 

Remarquons alors que f -~ f  est h orbites finies, car on a (comme un calcul 

imm6diat le montre): 

l 
id sur A 

f sur B, 

f-If = f - '  sur B2 

~ s2ur C, U C2 

s u r  C3. 

Regroupant  ce qui vient d '&re montr4 et la Proposition 1, on obtient: 

LEMME 3. Pour tout f appartenant fi ~, on peut trouver ~ s, t appartenant ?t 

tels que : 

i) f = [ s , t ] ~  

ii) sups, supt, s u p [  sont inclus darts sup/, 

iii) m (sup f )  - ½ m (sup f). 

Dans le lemme suivant L d6signe l'intervalle L = [Ejz_] 1/T, Ej=~ 1/2i], voir 
Figure 2. 

0 1/2 3/4 }7/8 1 
I I I I a 

11 12 I3 
Fig. 2. 

LEMME 4. Soit f appartenant fi ~, supposons que supf  C I,. On peut alors 

construire 2 suites ~),~1 (G),~, d'~ldments de ~d relies que: 

a) f l = f ,  
b) f, = 
c) sup~ CI,, 

d) G = [s~,t,][s'i,t'~] avec sups,, sup& sups', et supt', inclus dans I, UL+~. 

DEMONSTRATION. On montre comment construire C1 et f2, les suites s'obtien- 

nent en recommenqant de la m6me mani6re. 



Vol. 29, 1978 TRANSFORMATIONS DE [0, 1] 305 

Par le Lemme 3, on peut trouver ~ s, t tous de support dans L tels que: 

- - f  = [s, t] )~ 

- -  m (sup f )  < ~ m (sup f). 
Par la 2e condition, on a m (sup f )  < m(I2)= ½re(L). 

Par application du Lemme O, on peut trouver t ' E  ~ tel que s u p t ' C L  U/2 et 

que t ' ( sup f )CI2 .  Posons alors f2 = t ' f t  '-l, on a: 

- - s u p  f2 C 12, 

- f = [ s , t ] [ =  [ s , t ] [ L  t ' ] t ' f i ' - '  = [ s , t ] [ ~  t']f2. 
I1 suffit alors de poser C~ = [s, t] [~ t']. [] 

COROLLAmE 5. Soit f tel m (Sup f)=<½, alors f est le produit de 4 com- 

mutateurs. 

DEMONSTRATION. Par le Lemme 0, on peut supposer que sup f CL.  Appli- 

quons h f la construction du Lemme 4, dont nous gardons les notations. 

Puisque les (C2~+~)~ (resp(C2k)k~) ont des supports disjoints, il est facile de 

voir que Cimp = CIC3Cs. . .  (respCpair = C2C4C6...) existe. De plus Cimp = 

[Simp, limp] [S~mp, l~mp] (resp Cp.ir = [sp.,r, tpair] [Spair, t~.~]). Si on montre alors que 

f = C, mpCp.i,, on aura termin6. 

Pour le faire, remarquons que la relation C = ~f.+~ et le fait que les f~ ont des 

supports disjoints, entrainent que: 

C~,~p = f , f~ ' f ,  f 4 ' f s f6 ' . . .  = ( f , f3 f , . . . ) ( f~ ' fZ ' f61. . . ) ,  

C,.~ = f f f ; '  A f~' h f~l . . .  = (f;' f~' f~ ' . . - )  (f~f~h...). 

En faisant le produit de ces 6galit6s membre ~ membre, on obtient: 

f = f , =  c,~, Cp.,r. [] 
TH~OREME 6. q3 est parfait. Plus prdcisdment tout dldment de ~d est le produit de 

5 comrnutateurs. 

DgMONSTRATION. Par le Lemme 3, f = [s, t] [ avec m (sup D ---< ½. I1 suttit alors 

d'appliquer le c0rollaire 5 h ~ [] 

§4. ~ est simple 

On va d6montrer que [qJ, ~]  est le plus petit sous-groupe distingu6 de q3. Pour 

cela on va adapter ~ notre situation un argument connu, qui est dO/l Epstein [1] 

et Higman [5]. 

On d6montre d 'abord un lemme. 

LEMME 7. Soit e > 0  donnd, route transformation appartenant it ¢d s'dcrit 

f = g l " " g ,  avec m ( s u p g , ) <  e. 
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D~MONSTRATION. I1 Suffit de montrer  que si f E ~3, alors f = gig2 avec 

m (supg,)=<]m (supf) i = 1,2. 

Posons A = supf. Soit B CA avec m ( B ) = ~ m ( A ~ .  Soit g , E  ~3 qui v6rifie: 

--g, IB :f ,  
- s u p g l C B  U f ( B )  et par cons6quent re(sup gO<=½m(A). 

L'existence de g, est 6tablie par le Lemme 0 puisque m ( B - f ( B ) ) =  

m ( f ( B ) - B ) .  Cette 6galit6 r6sulte du calcul suivant: 

m (B - f (B) )  = m (B - B n f (B) )  = m (B) - m (B f] f (B) )  

= m ( f ( B ) ) - m ( B  N f (B) )  = m ( f ( B ) - B ) .  

Si on pose g2=g[~f, on a s u p g 2 C A - B  et par congequent m ( s u p g 2 ) -  < 

m (A - S ) =  3m (A). [] 

REMARQUE. Le Lemme 7 se d6montre aussi imm6diatement en remarquant 

que ~ est connexe (et m6me contractile) pour la topologie forte [6]. 

PROPOSITION 8. [~, ~] est le plus petit sous-groupe distingud (non trivial) de ~. 

DEMONSTaATION. Soit ~ un sous-groupe distingu6 non trivial de ~. On peut 

alors trouver f E ~ f ~  id. Puisque f / i d ,  il existe E C [0, 1] de mesure > 0 et tel 

que f ( E ) n  E = O (voir Lemme 7.1, page 103 de [2]). 

Pour montrer  que [~g, ~d] C ~,  il suffit, d'apr~s le Lemme 7, de montrer  que si g, 

h E ~ ont un support de mesure infdrieure h re(E)~2, alors [g ,h]E ~. 

Par l 'hypothbse faite sur g e t  h, on a m ( s u p h U s u p g ) < - - m ( E ) ,  par 

cons6quent, quitte ~ conjuguer f par un 616ment de ~, on peut supposer que 

Supg U S u p h  CE. 

Remarquons alors que t~ = [h,f] = h f h - ~ f  -~ appartient/~ ~.  De m6me [g,/~] 

appartient ~ ~.  Or [g,/~] = [g,h], comme on le voit en remarquant que g e t  

f h -~[  -' commutent,  puisqu'ils sont ~ supports disjoints ( s u p g C E  et 

s u p f h - ~ f  ' Cf (E)) .  On a alors [g ,h]E ~. [] 

Regroupant le Th6orbme 6 et la Proposition 9, on obtient: 

THEOR~ME. ~g est un groupe simple. 

§5. Consequence 

Puisque ~ est un groupe simple, s i f  est ~ id, tout autre 616ment g s'6crit 

g = f l " " f , ,  avec f~ conjugu6 h f±'. Nous allons voir que n peut 8tre major6 par 

une constante qui ne d6pend que de m(supf ) .  La d6monstration se fait en 

examinant de plus pr6s ce qui pr6cbde. 

Consid6rons d 'abord le cas des involutions. Rappelons que T e s t  une 

involution si T 2 = Id. 
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LEMME 9. Tout gldment de ~ est le produit d'au plus 10 involutions. 

DI~MONSTRATION. I1 ressort  de la d6monst ra t ion  de la Proposi t ion 1 que route 

t ransformat ion h orbites finies est le produi t  de deux involutions. 

Consid4rons  main tenant  f avec s u p / C  11. Par ce qui pr4chde le L e m m e  3, 

on peut  6crire f = gzf avec m (sup f )  =< ~ et g~ h orbites finies. Si t une involution 

telle que t(supf)CI2, sup tCI tUI2  et m(supt)=2m(I2) ,  on a: f =  

g l f t f - ~ t - ~ t f t  -'. Si on pose f t f  J=h~,  t -1= k~ et t f t -~=f2,  on a: 

- - f  = g~hlklf2, 
- - g l  est h orbites finies, h~ et k~ sont des involutions,  

sup gl C I~; sup h 1 et sup k ~ C Iz U 12; sup f2 C/2. 

Ce proc4d4 pe rme t  de construire  par  induction des suites (f,),~t (g~)~__.t (h,),~l et 

(k,),~t relies que: 

- - f  = f l ,  sup f, C/i, 

- - f ,  = g ,h ,k , f , . , ,  

- - g ,  est ~ orbites finies, h, et kl sont des involutions, 

- -  sup gl C L, sup h, et sup ki C L U Ii+~; m (sup h,) = m (sup ki) = 2m (I,+1). 

On obt ient  comme  au Corol la i re  5: f = g~mp himp k~.,p gp~ h p~r k p~i~, c la i rement  h~,,p, 

k~,p, hp~ et kp~ir sont des involutions,  g~mp et gp~ sont d 'o rd re  fini, et par 

cons6quent  chacun est le produi t  de 2 involutions. On en conclut que f est le 

produi t  de 8 involutions. 

Ce qui pr6c~de le L e m m e  3 mont re  qu 'une  t ransformat ion que lconque  est le 

produi t  d 'une  t ransformat ion h orbi tes  finies et d 'une  t ransformat ion dont  le 

support  a une mesure  _<-~, par cons6quent  toute  t ransformat ion est le produi t  

d 'au plus 10 involutions. [ ]  

REMAROUE. Dans la construct ion pr4c4dente,  on voi t  que m (sup gi)_- < 

m (L) = 1/2' et m (suph, )  = m (sup k,) = 2m (I~+~) = 1/2'. Ceci nous donne:  

1 2 
m (supg~m~), m (sup h~mp), m (sup kimp) =< ,~0~2 2'i'*' = 5' 

m (sup gp,~r), m (sup hpair), m (sup kp~,r) =< .= ~ = 3" 

Ceci pe rmet  de dire que,  parmi les dix involut ions n4cessaires pour  6crire une 

t ransformat ion,  il y e n  a 4 dont  le suppor t  a une mesure  < .{ et 4 dont  le support  a 

une mesure  <_-]. On utilisera ce fait dans la suite. 

LEMME 10. Si fCcg, alors il existe E C I  tel que m(E)>-_~m(supf) et 

f (E )n  E =0 .  



308 A. FATHI Israel J. Math. 

DI~MONSTRATION. C'est une cons6quence de la Proposition 2, car il suflit de 

poser E = B, U C,. [] 

COROLLAtRE 11. Soit f E ~, f # id. Soit tune involution, alors test le produit de 

2k conjuguds de f ou f-I avec k = [3m (supt)/2m (sup f)] + 1, o~ Ix] est le plus 

grand entier stricternent inf&ieur ~ x. 

DEMONSTRATION. S i t  est une involution quelconque, t s'6crit comme le 

produit de k involutions dont le support a une mesure = } r e ( s u p / ) ,  off 

k = [3m (sup t)/2m (sup f)] + 1. II suflit, par cons6quent, de montrer que, si 

a<=]m(supf), alors il existe une involution t avec m ( s u p t ) =  a et t est le 

produit de 2 conjugu~s de f-~'. Pour cela, soit t' une involution avec sup t' C E  et 

m ( sup t ' )=  a/2,  off E est donn6 par le Lemme 10; si on pose t = t ' f t ' f  -~, on 

v6rifie ais6ment que t a l e s  propri6tes voulues. [] 

THEOaEME. Si f ~  id, tout ~ldment de ~ est le produit d' au plus (18n + 24) 

conjuguds de f ou f-t ,  off n = [1/m (sup/)].  En particulier si l' ensernble des points 

fixes de f est ndgligeable, tout ~ldment de ~ est le produit d' au plus 24 conjuguds de 

fou f-'. 

DEMONSTRATION. Le Corollaire 11, joint au Lemme 9 et/~ la remarque qui le 

suit, montrent qu'un 616ment de ~3 est le produit d'au plus 21 conjugu~s de f 

ou f - '  avec: 

1 = 2 / [  3 .1  ] +  3"]  ([  3"I  ] I ) .  
,L2m ( s u , ) ~  1 ) +  4 ( [ 2 m ~ s ~ , ] +  ~ ) + 4 , t 2 ~  ( s u p , ~ +  

Or on voit facilement que: 

1_-<2((3n + 1)+ 1 ) + 4 ( n  + 1 ) + 4 ( ~ +  1) = 9n + 12. [] 
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